11-30-2021, 12:18 AM
I just realized that I need to clarify what I mean by a highly active volcano such as Kilauea. Because that aspect has obviously escaped TomK's recognition, I shouldn't have assumed he knew what a highly active volcano implies, particularly Kilauea. An active volcano is defined as a volcano that is either about to erupt or is erupting. Not all volcanoes erupt the same.
You cannot practically use muons to determine when Kilauea will erupt as it's erupting now. We can see that with our own eyes and no muon tomography is needed to determine the state of Kilauea with respect to eruption. Kilauea is erupting at this very moment and pretty much in a continual state of eruption in some form or another, with very brief rest periods between it's very long eruptions. Are there lava flows exiting the crater or lava fountains at this time? Not really, but there is an eruption occuring from a single vent in the western wall of Halemaʻumaʻu crater, according to today's and yesterday's, etc volcano summaries.
HVO Kilauea -
"Activity Summary: Kīlauea volcano is erupting from a single vent in the western wall of Halemaʻumaʻu crater. As of this morning, November 29, 2021, all lava activity is confined within Halemaʻumaʻu crater in Hawai‘i Volcanoes National Park. Seismic activity and volcanic gas emission rates remain elevated."
Mauna Loa, you might be able to predict when lava is destined to emerge at its caldera surface, "erupt", but then you're left with wondering if it will decide to flow outside the confines of the caldera immediately and pose a threat downslope or just emerge at the caldera surface and move around within it for days, weeks or months on end, before finally venturing downslope.
So, using muons to predict eruptions from other dormant volcanoes is definitely possible but using them to determine when lava will flow out of an already erupting Hawaii volcano and threaten downslope residence, not likely a practical endevour. Tracking lava within a rift dike, maybe possible, but they flow through pretty quickly. Then you're left guessing which established fissure as they occure, will the lava pop out of... ? Some will keep the lava restrained while others may allow the lave to punch through to the surface.
You cannot practically use muons to determine when Kilauea will erupt as it's erupting now. We can see that with our own eyes and no muon tomography is needed to determine the state of Kilauea with respect to eruption. Kilauea is erupting at this very moment and pretty much in a continual state of eruption in some form or another, with very brief rest periods between it's very long eruptions. Are there lava flows exiting the crater or lava fountains at this time? Not really, but there is an eruption occuring from a single vent in the western wall of Halemaʻumaʻu crater, according to today's and yesterday's, etc volcano summaries.
HVO Kilauea -
"Activity Summary: Kīlauea volcano is erupting from a single vent in the western wall of Halemaʻumaʻu crater. As of this morning, November 29, 2021, all lava activity is confined within Halemaʻumaʻu crater in Hawai‘i Volcanoes National Park. Seismic activity and volcanic gas emission rates remain elevated."
Mauna Loa, you might be able to predict when lava is destined to emerge at its caldera surface, "erupt", but then you're left with wondering if it will decide to flow outside the confines of the caldera immediately and pose a threat downslope or just emerge at the caldera surface and move around within it for days, weeks or months on end, before finally venturing downslope.
So, using muons to predict eruptions from other dormant volcanoes is definitely possible but using them to determine when lava will flow out of an already erupting Hawaii volcano and threaten downslope residence, not likely a practical endevour. Tracking lava within a rift dike, maybe possible, but they flow through pretty quickly. Then you're left guessing which established fissure as they occure, will the lava pop out of... ? Some will keep the lava restrained while others may allow the lave to punch through to the surface.